Paravalvular Regurgitation after TAVR

Judith Buckland, MBA, RDCS, FASE

CARDIOSERV

Definitions

TAVR

• Transcatheter aortic valve replacement

Paravalvular Regurgitation (PVR)

• Regurgitation OUTSIDE the circumference of the stent valve

Meeting Goals

- TTE v TEE
- Mechanism of Paravalvular Regurgitation
- Severity Algorithm New guideline paper
- Diagnose definitely MILD or SEVERE
 - Color Doppler Quantification
 - Spectral Doppler Quantification

CARDIOSERV

Introduction

TAVR Balloon Expandable Vs. Self Expanding Valves

CARDIOSERV

Introduction

Past decade $\ensuremath{\mathsf{Task}}$ and $\ensuremath{\mathsf{Task}}$ and $\ensuremath{\mathsf{Task}}$ has increased.

• TAVR is an accepted alternative to SAVR

- High & intermediate-risk as well as inoperable patients
- April 2019: Severe AS in low-surgical risk patients

How does this affect you?

- Post TAVR assess for regurgitation via echo
- Residual regurgitation predictor of mortality
 Moderate or severe regurg. ↑ mortality

• Sonographer:

Assess and quantify regurgitation after TAVR
Provide a guide to the cardiac team

CARDIOSERV

TAVR Follow Up – Uncomplicated TAVR Pts w/ uncomplicated TAVR implantation:

- Complete TTE soon after implantation to establish baseline valvular function
- 1-3 months
- 1 year

Clinical Deterioration: As needed (underlying cause?)

The baseline post TAVR TTE is integral to accurate follow-up

Uncomplicated **Clinical Deterioration**

TAVR Follow Up

CARDIOSERV

Balloon Expandable – Edwards SAPIEN

Balloon assisted expansion

CARDIOSERV

Valves Balloon Expandable Vs. Self Expanding Valves

CARDIOSERV

Self Expandable - Medtronic Corevalves/Evolut

Spontaneously expand on release

CARDIOSERV

Paravalvular Regurgitation Post TAVR

Causes

Cause: Poor Positioning (Malapposition)

Definition: The separation of at least one stent strut from the surface of the wall with evidence of blood behind the strut

Malapposition: Causes

- 1. Under-expanded
- 2. Placed too low
- 3. Placed too high

CARDIOSERV

Incomplete Positioning

Causes:

- 1. Under expansion of the prosthesis
- 2. Heavy calcification
- Flow is outside the circumference of the prosthetic stent frame (paravalvular)
- PVR originates from space between Stent & Annulus

CARDIOSERV

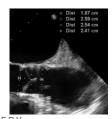
Mechanism: Incomplete

Examples

CARDI©SERV

Example: Under-Expanded

- Under-expanded
- TEE short axis: Assess shape (circular or non circular)
- Oval-shaped waist
- Medtronic CoreValve 29mm
- Self Expandable


Dist 2.65 cm

Example: Incomplete Positioning

- TEE PSAX
- Device is not co-axial to the root
- Space between prosthetic valve and left annulus
- Edwards SAPIEN 26mm
- Balloon Expandable Device

Valve Measurement

- Example: TEE long axis
- Diameters of 24 to 26 mm indicating reasonable expansion in the presence of PVR
- Edwards SAPIEN XT 26-mm
- Balloon Expandable Device

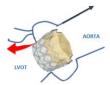
CARDIOSER

Mechanism: Supra-skirt

Cause Examples

CARDIOSERV

Too Low "Supra-Skirt" PVR Mechanism: Supra-skirt • Low implant ("too ventricular")

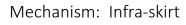


CARDIØSERV

• High implant ("too aortic")

Mechanism: Infra-skirt

- · Partially above the native annulus • Flow Pattern outside the circumference of the stent (PVR) :
- Paravalvular space → irregular inflow edge → LVOT



CARDIOSERV

- Prosthesis is deployed at a depth that exceeds the height of its tissue skirt
- Regurgitant jet passes above the skirt outside the circumference of the stent (PVR)
- Flow Pattern:
- Aortic portion --> paravalvular space → LVOT

CARDIOSERV

IVC

Causes Examples

Too High "Infra-Skirt"

CARDIOSERV

Transvalvular Regurgitation Post TAVR

Definition Example

CARDIOSERV

Transvalvular Aortic Regurgitation

- Easy to differentiate from PVR
- WITHIN the circumference of prosthetic stent frame (central jet)
- Transvalvular AR Assess valve leaflets
 Structural damage vs. insufficient diastolic pressure to close them?

CARDIOSERV

Example: Transvalvular Aortic Regurgitation

- TEE long-axis view
- Both: Transvalvular central jet
- PVR Posterior Jet
- Edwards SAPIEN 23-mm
- Balloon Expandable Device

CARDIOSERV

Jet Location Tips

- The jet must enter the LV to be considered true regurgitation • Image just below the edge of the stent to *confirm true PVR*
- Color flow around valve within S of V, but above the annular valve skirt should not be mistaken for PVR.
 - This low velocity flow (not aliased) does not connect with the LVOT in diastole
- \bullet Scan through the long axis of the valve to distinguish sinus flow from PVR.

CARDIOSERV

TEE: Good for Posterior Regurg (PVR)

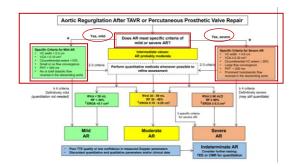
CARDIOSERV

Echo Quantification of PVR After TAVR

4 Principles . Color Doppler CW and PW Doppler Quantification (Rvol & RF)

CARDIOSERV

4 Principles: Evaluation of PVR with Echo


- 1. Comprehensive Exam 2D, color, CW, PW, TTE, TEE, 3D
- 2. Individualization to the patient (mechanism, location of PVR)
- 3. Integration of multiple parameters
- 4. Precise & standardized language to describe findings (TEE/TTE) Severity
 - Location

CARDIOSERV

Location Description: Clock Face

Place the tricuspid valve at 9 o'clock

Semi Quantitative Color Doppler

VCW VCA Circumferential Extent

CARDIOSERV


Vena Contracta Width (VCW)

Advantages Disadvantages Technique

CARDIOSERV

Vena Contracta Width

 Vena contracta: Narrowest region between the proximal laminar flow and the distal turbulent regurgitant jet spray

CARDIØSERV

Vena Contracta Width: Advantages

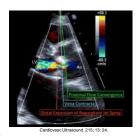
- Valid in eccentric jets
- Independent of flow rate and driving pressure
- Less dependent on technical factors simple & reproducible
- · Good at identifying mild or severe AR
- · Rapid qualitative assessment

CARDIOSERV

Vena Contracta Width: Disadvantages

- Smaller jets difficult to evaluate severity
- Problematic with multiple jets
- Irregular shaped jets: Over or underestimate severity

VC Width – Correct Technique


- Select image plane that optimizes the Vena Contracta – not always PLAX
- Zoom Image
- Narrowest area of jet
- Avoid surrounding blurred color signals
 Remove color from frozen image (color suppression)

CARDI©SERV

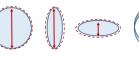
VC Width – Tips

- Sweep Valve to ensure smallest VC
 Flow convergence → VC →, to jet spray
- Maximize Nyquist limit (>65 cm/sec):
 Distinguish high vs. low velocity

Vena Contracta Area (VCA)

Advantages Disadvantages Blooming Artifacts Technique

CARDIOSERV


Vena Contracta Width Values

AR Vena Contracta Width (VCW)		
Mild	< 0.3 cm	
Moderate	0.3 – 0.6 cm	
Severe	> 0.6cm	

CARDIOSERV

VC Area: Advantages

- May allow addition of multiple jets
- \bullet Strong correlation existed between 2D VCA and 3D VCA
- Good for VC jet shapes that are irregular or ellipsoid

CARDI

VC Area: Disadvantages

- · Accuracy limited by spatial resolution for small jets
- User Error
- Prone to blooming artifacts
- Color extends beyond true boundaries
- Mainly distal portion
- Lower the color gain to reduce color bleed!

CARDIOSERV

VC Area – Correct Techniques

- Trace each jet and add together
- Narrow color flow sector
- ↑ resolution
- Mid-diastole
 - Minimize effect of cardiac motion

3D VCA

CARDI©SERV

Vena Contracta Area

AR Vena Contracta Area (VCA)		
Mild < 10 cm ²		
Moderate	0.10 – 0.29 cm ²	
Severe ≥ 0.30 cm ²		

Circumferential Extent %

Technique Severity Values

Circumferential Extent %

Assess the extent of the PVR around stent

1. Trace Circumference (C)

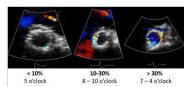
2. Measure length of jet along valve curvature

Single Jet: (a/c)*100 Multiple Jets: [(a + b)/c]*100 **Multiple jets: Measure each jet

CARDIOSERV

Circumferential Extent: Technique

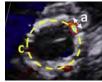
- Measure: Parasternal Short Axis
- Scan and Check: PLAX, Apical 5 and Apical 3
- Some jets may not be detected in PSAX
- Shadowing from the prosthesis (PSAX)Complete interrogation:
 - Transducer rotation & tilting upward or sideways
 Off-axis planes


Circumferential Extent

Severity of PVR	Circumferential %
Trace	Pinpoint Jet
Mild	< 10%
Moderate	(10 – 30%)
Severe	> 30%

CARDIOSERV

Circumferential Extent: Reporting


CARDIOSERV

Circumferential Extent %: Caution

VCA Factor Correct Imaging Plane

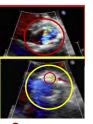
CARDIOSERV

Circumferential Extent & VCA

MILD VCA: 0.1 cm²

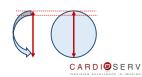
MILD Circumferential Extent: 8% MILD Circumferential Extent: 10% MODERATE VCA: 0.2cm²

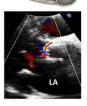
CARDIOSERV


Circumferential Extent & VCA

- Circumferential Extent DOES NOT factor in VCA Only measures the length of the jet in relation to circumference NOT JET THICKNESS
- Similar Circumferential Extent BUT larger VCA = greater PVR
- \uparrow VCA = \uparrow jet thickness = \uparrow severity
- Severity of PVR is affected by both circumferential extent and thickness of the PVR

Circumferential Extent: Correct Plane


TTE, Anterior Eccentric Jet



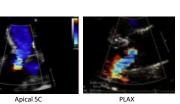
CARDIOSERV

Jet/LVOT ratio not used post TAVR

- PVR jets are frequently eccentric & constrained by the LVOT, leading to rapid jet broadening
- TTE, anterior eccentric jet

Qualitative Color Doppler

Proximal Flow Convergence


CARDIOSERV

Proximal Flow Convergence

Advantages / Disadvantages Technique

Proximal Flow Convergence

- Large flow convergence indicative of severe PVR
- Rapid qualitative assessment
- Disadvantages:
- Multiple jets

Proximal Flow Convergence: Technique

Zoomed view

- Change baseline of Nyquist limit in the direction of the jet
- Adjust lower Nyquist limit to obtain the most hemispheric flow convergence
- Align direction of flow parallel to US beam to avoid distortion of hemisphere

CARDI

Proximal Flow Convergence: Severity

Proximal Flow Convergence		
Mild Absent		
Moderate	May be present	
Severe	Often present	

CARDIOSERV

Color Doppler Summary

Key Points Tips and Artifacts Severity Chart

PVR Color Severity: Semi-Quantitative/Qualitative

TAVR: Color Flow Severity of AR			
Semi Quantitative	Mild	Moderate	Severe
VCW	< 0.3 cm	0.3 – 0.6 cm	> 0.6 cm
VCA	< 10 cm ²	0.10 – 0.29 cm ²	<u>></u> 0.30 cm ²
Circumferential	<10%	10-29%	<u>></u> 30%
Qualitative	Mild	Moderate	Severe
Prox. Flow Convergence	Absent	May be present	Often present

CARDIOSERV

Summary: Color Doppler

Scan entire Valve: Distal - Prox (Aortic - LVOT) to identify jet:

- 1. Width (VCW/VCA)
- 2. # of Jets / Circumferential extent of jet
- 3. Location (o'clock, ant/post) (Mechanism: supra-skirt / infra-skirt)
- 4. Direction (eccentric)
- Short-axis imaging below the valve may overestimate PVR severity in eccentric jets
- Attenuation hinders visualization of regurgitation
 - Anterior (TEE)
 - Posterior (TTE)

CARDIOSERV

Continuous Wave (CW)/ Pulse Wave (PW)

Native Valves:

- Pressure half-time
- Jet density (CW)
- Desc. Aortic Flow Reversal

TAVR:

These values have *limited application – multiple jets*

CARDI©SERV

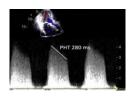
Spectral Doppler (CW)/ PW)

Desc. Aorta flow reversal

PVR: Pressure Half Time Limitations

• Multiple Jets

LV Compliance affects PHT


↑ Stiffness = ↓PHT (over-estimate)

Pressure half-time in extremes may be helpful

Pressure Half Time		
Mild > 500 ms		
Severe < 200 ms		

PVR: Jet Density

- Multiple PVR jets limits CW spectral density from a single jet
- Jet Density: Very dense waveform signals at least moderate AR

CARDIOSERV

Pressure Half Time

PHT & LV Compliance

Jet Density

CARDIOSERV

PVR: Desc. Aorta Flow Reversal

Exceptions Severity

CARDIOSERV

False Readings: Desc. Aorta Flow Reversal

- 1. <u>NO Holodiastolic flow reversal ... in the presence of SEVERE REGURG</u>. • Severe bradycardia
- Flow reversal....with NO regurgitation
 HTN patients

Pre-TAVR assessment of descending aortic flow is essential

Desc. Aorta Flow Reversal

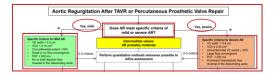
In the absence of baseline flow reversal:

Severe PVR: End-diastolic flow <a>20 cm/s (Normal HR)

Flow reversal in the *abdominal aorta* is a more specific indication of significant regurgitation

CARDIOSERV

TAVR: Desc. Aorta Flow Reversal


Diastolic Flow Reversal (PW)				
Mild Moderate Severe				
Desc. Aorta	Brief	May be	Holodiastolic	
	Early Diastolic	holodiastolic	20cm/s (end D)	
Abdominal Aorta	Absent	Absent	Present	

Integrated Approach

Mild Severe

CARDI©SERV

Integrated Approach

CARDIOSERV

Mild AR

Meet 4 or more Criteria: Definitively MILD No Need To Perform Additional Quantification

MILD AR		
VCW	< 0.3 cm	
VCA	< 0.10 cm ²	
Circumferential Extent	< 10%	
Flow Convergence None / Small		
РНТ	> 500 ms	
Desc. Aorta Flow Reversal	None / Brief	

CARDIOSERV

Severe AR

Meet 4 or more Criteria: Definitively SEVERE

No Need To Perform Additional Quantification

SEVERE AR		
VCW	> 0.6 cm	
VCA	<u>></u> 0.30 cm ²	
Circumferential Extent	<u>></u> 30%	
Flow Convergence	Large	
РНТ	< 200ms	
Desc. Aorta Flow Reversal	Holodiastolic > 20cm/s	

CARDIOSERV

Advanced Quantification

Rvol RF EROA

CARDIOSERV

PVR Color Severity: Quantitative

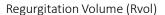
TAVR: Color Flow Severity of AR			
Quantitative	Severe		
RF	< 30%	<mark>30</mark> – 49%	<u>></u> 50%
RVol	< 30 mL	30 – 59 mL	> 60 mL _{4 in low flow}
EROA	< 0.10 cm ₂	0.10 – 0.29 cm ₂	<u>></u> 0.30 cm ₂

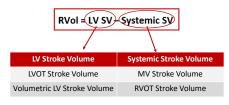
TAVR population: CMR RF in PVR showed a reduced survival with a RF of 30%

CARDIOSERV

RVol = LV SV – Systemic SV

- Post TAVR patients have smaller RVol
 LVH, Smaller LV cavity, Abnormal
 - LVH, Smaller LV LV compliance
 - (explaining why even mild regurg. post TAVR impacts clinical outcomes)
- Native AR cut-off for severe (RVol of > 60 mL) seems inappropriate early after TAVR


CARDIOSERV


- RF = RVol / SVLVOT
- More physiologically important parameter
- Normalizes for ↓ SV
 Cardiac MRI grading relies on RF:
- Reduced survival with a RF of 30% • <u>Echo</u> RF : Moderate 30-49%

Regurgitant Volume (Rvol)

LV Stroke Volume Systemic Stroke Volume

CARDIOSERV

CARDIOSERV

LVOT Stroke Volume Volumetric Stroke Volume

CARDI©SERV

15

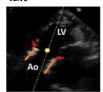
LV Stroke Volume (SV_{LVOT})

- LVOT Diameter
- PW LVOT same location

CARDIOSERV

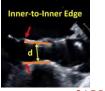
Challenges

LVOT Measurement Challenges:

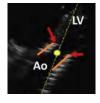

- Valve protrudes into the LVOT (unlike sutured surgical valve)
- Match PW LVOT sample with LVOT diameter of valve

LVOT Diameter: Preferred Method

Outer-to-outer border of the valve Ventricular tip


PW sample: Apical to the valve

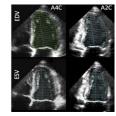
C A R D I 😕 S E R V


LVOT Diameter: Deep Valve Placement

• In-stent diameter, mid-stent, level of leaflets • Inner-to-inner

CARDI©SERV

PW sample volume IN STENT Proximal to the valve



Volumetric Stroke Volume

LV Stroke Volume: Volumetric Method

Bi-Plane LV Volumes

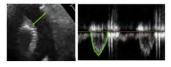
- End Diastole & End Systole
- 4 Chamber & 2 Chamber
- Use contrast if needed

Systemic Stroke Volume

MV Stroke Volume RVOT Stroke Volume

MV Stroke Volume

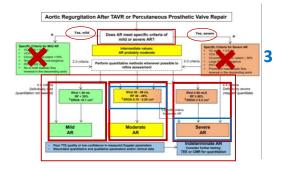
• MV Annulus Diameter


• PW MV – same location

CARDIOSERV

RVOT Stroke Volume

- RVOT Annulus Diameter
- PW PV same location


CARDI©SERV

MV Stroke Volume

CARDIOSERV

RVOT Stroke Volume

Contradicting Data

- Advanced quantification required if do NOT meet \geq 4 criteria
- If assessment is difficult and indeterminate or provides contradicting data:
 - Look carefully for technical and physiologic reasons to explain these discrepancies
 - Rely on the components that have the best quality / most accurate considering the underlying clinical condition

Further testing with either TEE or CMR:

Integration of Multiple Parameters

PVR after TAVR should be a comprehensive and integrative process
• More challenging compared to native AR

Color flow Doppler – Most essential modality

Scan entire Valve: Distal - Prox (Aortic - LVOT) to identify jet:

1. Width (VCW/VCA)

- 2. # of Jets / Circumferential extent of jet
- Location (o'clock, ant/post) (Mechanism: supra-skirt / infra-skirt)
- 4. Direction (eccentric)

CARDIOSERV

Summary

Color Doppler – Key Points

- Short-axis imaging below the valve may overestimate AR severity in eccentric jets
- Attenuation hinders visualization of regurgitation
 - Anterior (TEE)
 Posterior (TTE)
- Valvular regurgitation severity classification:
 - Mild, moderate, severe

If the AR is definitely determined as mild or severe, no further quantification is required

CARDIOSERV

CARDI©SERV

Hand out available at: www.cardioserv.net/MCSS

CARDIOSERV

References